Wpf System test

This commit is contained in:
Troispoils 2024-03-06 17:19:53 +01:00
parent af9c782c1e
commit 9ad4bc1c69
17 changed files with 746 additions and 12 deletions

9
WpfMapView2D/App.xaml Normal file
View file

@ -0,0 +1,9 @@
<Application x:Class="WpfMapView2D.App"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="clr-namespace:WpfMapView2D"
StartupUri="MainWindow.xaml">
<Application.Resources>
</Application.Resources>
</Application>

11
WpfMapView2D/App.xaml.cs Normal file
View file

@ -0,0 +1,11 @@
using System.Configuration;
using System.Data;
using System.Windows;
namespace WpfMapView2D;
/// <summary>
/// Interaction logic for App.xaml
/// </summary>
public partial class App : Application {
}

View file

@ -0,0 +1,10 @@
using System.Windows;
[assembly: ThemeInfo(
ResourceDictionaryLocation.None, //where theme specific resource dictionaries are located
//(used if a resource is not found in the page,
// or application resource dictionaries)
ResourceDictionaryLocation.SourceAssembly //where the generic resource dictionary is located
//(used if a resource is not found in the page,
// app, or any theme specific resource dictionaries)
)]

View file

@ -0,0 +1,106 @@
using OpenTK.Mathematics;
namespace WpfMapView2D.Common {
// This is the camera class as it could be set up after the tutorials on the website.
// It is important to note there are a few ways you could have set up this camera.
// For example, you could have also managed the player input inside the camera class,
// and a lot of the properties could have been made into functions.
// TL;DR: This is just one of many ways in which we could have set up the camera.
// Check out the web version if you don't know why we are doing a specific thing or want to know more about the code.
public class Camera {
// Those vectors are directions pointing outwards from the camera to define how it rotated.
private Vector3 _front = -Vector3.UnitZ;
private Vector3 _up = Vector3.UnitY;
private Vector3 _right = Vector3.UnitX;
// Rotation around the X axis (radians)
private float _pitch;
// Rotation around the Y axis (radians)
private float _yaw = -MathHelper.PiOver2; // Without this, you would be started rotated 90 degrees right.
// The field of view of the camera (radians)
private float _fov = MathHelper.PiOver2;
public Camera(Vector3 position, float aspectRatio) {
Position = position;
AspectRatio = aspectRatio;
}
// The position of the camera
public Vector3 Position { get; set; }
// This is simply the aspect ratio of the viewport, used for the projection matrix.
public float AspectRatio { private get; set; }
public Vector3 Front => _front;
public Vector3 Up => _up;
public Vector3 Right => _right;
// We convert from degrees to radians as soon as the property is set to improve performance.
public float Pitch {
get => MathHelper.RadiansToDegrees(_pitch);
set {
// We clamp the pitch value between -89 and 89 to prevent the camera from going upside down, and a bunch
// of weird "bugs" when you are using euler angles for rotation.
// If you want to read more about this you can try researching a topic called gimbal lock
var angle = MathHelper.Clamp(value, -89f, 89f);
_pitch = MathHelper.DegreesToRadians(angle);
UpdateVectors();
}
}
// We convert from degrees to radians as soon as the property is set to improve performance.
public float Yaw {
get => MathHelper.RadiansToDegrees(_yaw);
set {
_yaw = MathHelper.DegreesToRadians(value);
UpdateVectors();
}
}
// The field of view (FOV) is the vertical angle of the camera view.
// This has been discussed more in depth in a previous tutorial,
// but in this tutorial, you have also learned how we can use this to simulate a zoom feature.
// We convert from degrees to radians as soon as the property is set to improve performance.
public float Fov {
get => MathHelper.RadiansToDegrees(_fov);
set {
var angle = MathHelper.Clamp(value, 1f, 90f);
_fov = MathHelper.DegreesToRadians(angle);
}
}
// Get the view matrix using the amazing LookAt function described more in depth on the web tutorials
public Matrix4 GetViewMatrix() {
return Matrix4.LookAt(Position, Position + _front, _up);
}
// Get the projection matrix using the same method we have used up until this point
public Matrix4 GetProjectionMatrix() {
return Matrix4.CreatePerspectiveFieldOfView(_fov, AspectRatio, 0.01f, 5000f);
}
// This function is going to update the direction vertices using some of the math learned in the web tutorials.
private void UpdateVectors() {
// First, the front matrix is calculated using some basic trigonometry.
_front.X = MathF.Cos(_pitch) * MathF.Cos(_yaw);
_front.Y = MathF.Sin(_pitch);
_front.Z = MathF.Cos(_pitch) * MathF.Sin(_yaw);
// We need to make sure the vectors are all normalized, as otherwise we would get some funky results.
_front = Vector3.Normalize(_front);
// Calculate both the right and the up vector using cross product.
// Note that we are calculating the right from the global up; this behaviour might
// not be what you need for all cameras so keep this in mind if you do not want a FPS camera.
_right = Vector3.Normalize(Vector3.Cross(_front, Vector3.UnitY));
_up = Vector3.Normalize(Vector3.Cross(_right, _front));
}
}
}

View file

@ -0,0 +1,181 @@
using OpenTK.Graphics.OpenGL4;
using OpenTK.Mathematics;
using System.IO;
namespace WpfMapView2D.Common {
// A simple class meant to help create shaders.
public class Shader {
public readonly int Handle;
private readonly Dictionary<string, int> _uniformLocations;
// This is how you create a simple shader.
// Shaders are written in GLSL, which is a language very similar to C in its semantics.
// The GLSL source is compiled *at runtime*, so it can optimize itself for the graphics card it's currently being used on.
// A commented example of GLSL can be found in shader.vert.
public Shader(string vertPath, string fragPath) {
// There are several different types of shaders, but the only two you need for basic rendering are the vertex and fragment shaders.
// The vertex shader is responsible for moving around vertices, and uploading that data to the fragment shader.
// The vertex shader won't be too important here, but they'll be more important later.
// The fragment shader is responsible for then converting the vertices to "fragments", which represent all the data OpenGL needs to draw a pixel.
// The fragment shader is what we'll be using the most here.
// Load vertex shader and compile
var shaderSource = File.ReadAllText(vertPath);
// GL.CreateShader will create an empty shader (obviously). The ShaderType enum denotes which type of shader will be created.
var vertexShader = GL.CreateShader(ShaderType.VertexShader);
// Now, bind the GLSL source code
GL.ShaderSource(vertexShader, shaderSource);
// And then compile
CompileShader(vertexShader);
// We do the same for the fragment shader.
shaderSource = File.ReadAllText(fragPath);
var fragmentShader = GL.CreateShader(ShaderType.FragmentShader);
GL.ShaderSource(fragmentShader, shaderSource);
CompileShader(fragmentShader);
// These two shaders must then be merged into a shader program, which can then be used by OpenGL.
// To do this, create a program...
Handle = GL.CreateProgram();
// Attach both shaders...
GL.AttachShader(Handle, vertexShader);
GL.AttachShader(Handle, fragmentShader);
// And then link them together.
LinkProgram(Handle);
// When the shader program is linked, it no longer needs the individual shaders attached to it; the compiled code is copied into the shader program.
// Detach them, and then delete them.
GL.DetachShader(Handle, vertexShader);
GL.DetachShader(Handle, fragmentShader);
GL.DeleteShader(fragmentShader);
GL.DeleteShader(vertexShader);
// The shader is now ready to go, but first, we're going to cache all the shader uniform locations.
// Querying this from the shader is very slow, so we do it once on initialization and reuse those values
// later.
// First, we have to get the number of active uniforms in the shader.
GL.GetProgram(Handle, GetProgramParameterName.ActiveUniforms, out var numberOfUniforms);
// Next, allocate the dictionary to hold the locations.
_uniformLocations = new Dictionary<string, int>();
// Loop over all the uniforms,
for (var i = 0; i < numberOfUniforms; i++) {
// get the name of this uniform,
var key = GL.GetActiveUniform(Handle, i, out _, out _);
// get the location,
var location = GL.GetUniformLocation(Handle, key);
// and then add it to the dictionary.
_uniformLocations.Add(key, location);
}
}
private static void CompileShader(int shader) {
// Try to compile the shader
GL.CompileShader(shader);
// Check for compilation errors
GL.GetShader(shader, ShaderParameter.CompileStatus, out var code);
if (code != (int)All.True) {
// We can use `GL.GetShaderInfoLog(shader)` to get information about the error.
var infoLog = GL.GetShaderInfoLog(shader);
throw new Exception($"Error occurred whilst compiling Shader({shader}).\n\n{infoLog}");
}
}
private static void LinkProgram(int program) {
// We link the program
GL.LinkProgram(program);
// Check for linking errors
GL.GetProgram(program, GetProgramParameterName.LinkStatus, out var code);
if (code != (int)All.True) {
// We can use `GL.GetProgramInfoLog(program)` to get information about the error.
throw new Exception($"Error occurred whilst linking Program({program})");
}
}
// A wrapper function that enables the shader program.
public void Use() {
GL.UseProgram(Handle);
}
// The shader sources provided with this project use hardcoded layout(location)-s. If you want to do it dynamically,
// you can omit the layout(location=X) lines in the vertex shader, and use this in VertexAttribPointer instead of the hardcoded values.
public int GetAttribLocation(string attribName) {
return GL.GetAttribLocation(Handle, attribName);
}
// Uniform setters
// Uniforms are variables that can be set by user code, instead of reading them from the VBO.
// You use VBOs for vertex-related data, and uniforms for almost everything else.
// Setting a uniform is almost always the exact same, so I'll explain it here once, instead of in every method:
// 1. Bind the program you want to set the uniform on
// 2. Get a handle to the location of the uniform with GL.GetUniformLocation.
// 3. Use the appropriate GL.Uniform* function to set the uniform.
/// <summary>
/// Set a uniform int on this shader.
/// </summary>
/// <param name="name">The name of the uniform</param>
/// <param name="data">The data to set</param>
public void SetInt(string name, int data) {
GL.UseProgram(Handle);
GL.Uniform1(_uniformLocations[name], data);
}
/// <summary>
/// Set a uniform float on this shader.
/// </summary>
/// <param name="name">The name of the uniform</param>
/// <param name="data">The data to set</param>
public void SetFloat(string name, float data) {
GL.UseProgram(Handle);
GL.Uniform1(_uniformLocations[name], data);
}
/// <summary>
/// Set a uniform Matrix4 on this shader
/// </summary>
/// <param name="name">The name of the uniform</param>
/// <param name="data">The data to set</param>
/// <remarks>
/// <para>
/// The matrix is transposed before being sent to the shader.
/// </para>
/// </remarks>
public void SetMatrix4(string name, Matrix4 data) {
GL.UseProgram(Handle);
GL.UniformMatrix4(_uniformLocations[name], true, ref data);
}
/// <summary>
/// Set a uniform Vector3 on this shader.
/// </summary>
/// <param name="name">The name of the uniform</param>
/// <param name="data">The data to set</param>
public void SetVector2(string name, Vector2 data) {
GL.UseProgram(Handle);
GL.Uniform2(_uniformLocations[name], data);
}
public void SetVector3(string name, Vector3 data) {
GL.UseProgram(Handle);
GL.Uniform3(_uniformLocations[name], data);
}
public void SetVector4(string name, Vector4 data) {
GL.UseProgram(Handle);
GL.Uniform4(_uniformLocations[name], data);
}
}
}

View file

@ -0,0 +1,129 @@
using OpenTK.Graphics.OpenGL4;
using StbImageSharp;
using System.IO;
namespace WpfMapView2D.Common {
// A helper class, much like Shader, meant to simplify loading textures.
public class Texture {
public readonly int Handle;
public static Texture LoadFromFile(string path) {
// Generate handle
int handle = GL.GenTexture();
// Bind the handle
GL.ActiveTexture(TextureUnit.Texture0);
GL.BindTexture(TextureTarget.Texture2D, handle);
// For this example, we're going to use .NET's built-in System.Drawing library to load textures.
// OpenGL has it's texture origin in the lower left corner instead of the top left corner,
// so we tell StbImageSharp to flip the image when loading.
StbImage.stbi_set_flip_vertically_on_load(1);
// Here we open a stream to the file and pass it to StbImageSharp to load.
using (Stream stream = File.OpenRead(path)) {
ImageResult image = ImageResult.FromStream(stream, ColorComponents.RedGreenBlueAlpha);
// Now that our pixels are prepared, it's time to generate a texture. We do this with GL.TexImage2D.
// Arguments:
// The type of texture we're generating. There are various different types of textures, but the only one we need right now is Texture2D.
// Level of detail. We can use this to start from a smaller mipmap (if we want), but we don't need to do that, so leave it at 0.
// Target format of the pixels. This is the format OpenGL will store our image with.
// Width of the image
// Height of the image.
// Border of the image. This must always be 0; it's a legacy parameter that Khronos never got rid of.
// The format of the pixels, explained above. Since we loaded the pixels as RGBA earlier, we need to use PixelFormat.Rgba.
// Data type of the pixels.
// And finally, the actual pixels.
GL.TexImage2D(TextureTarget.Texture2D, 0, PixelInternalFormat.Rgba, image.Width, image.Height, 0, PixelFormat.Rgba, PixelType.UnsignedByte, image.Data);
}
// Now that our texture is loaded, we can set a few settings to affect how the image appears on rendering.
// First, we set the min and mag filter. These are used for when the texture is scaled down and up, respectively.
// Here, we use Linear for both. This means that OpenGL will try to blend pixels, meaning that textures scaled too far will look blurred.
// You could also use (amongst other options) Nearest, which just grabs the nearest pixel, which makes the texture look pixelated if scaled too far.
// NOTE: The default settings for both of these are LinearMipmap. If you leave these as default but don't generate mipmaps,
// your image will fail to render at all (usually resulting in pure black instead).
GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureMinFilter, (int)TextureMinFilter.Linear);
GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureMagFilter, (int)TextureMagFilter.Linear);
// Now, set the wrapping mode. S is for the X axis, and T is for the Y axis.
// We set this to Repeat so that textures will repeat when wrapped. Not demonstrated here since the texture coordinates exactly match
GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureWrapS, (int)TextureWrapMode.Repeat);
GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureWrapT, (int)TextureWrapMode.Repeat);
// Next, generate mipmaps.
// Mipmaps are smaller copies of the texture, scaled down. Each mipmap level is half the size of the previous one
// Generated mipmaps go all the way down to just one pixel.
// OpenGL will automatically switch between mipmaps when an object gets sufficiently far away.
// This prevents moiré effects, as well as saving on texture bandwidth.
// Here you can see and read about the morié effect https://en.wikipedia.org/wiki/Moir%C3%A9_pattern
// Here is an example of mips in action https://en.wikipedia.org/wiki/File:Mipmap_Aliasing_Comparison.png
GL.GenerateMipmap(GenerateMipmapTarget.Texture2D);
return new Texture(handle);
}
public static Texture LoadFromArray(string[] paths) {
// Générer un identifiant de texture
int handle = GL.GenTexture();
// Activer la texture
GL.ActiveTexture(TextureUnit.Texture0);
GL.BindTexture(TextureTarget.Texture2DArray, handle);
// Ici, nous supposons que toutes les images ont les mêmes dimensions et le même format
// Charger la première image pour obtenir les dimensions
ImageResult firstImage = ImageResult.FromStream(File.OpenRead(paths[0]), ColorComponents.RedGreenBlueAlpha);
int width = firstImage.Width;
int height = firstImage.Height;
// Initialiser la texture 2D array sans lui passer de données pour l'instant
GL.TexImage3D(TextureTarget.Texture2DArray, 0, PixelInternalFormat.Rgba, width, height, paths.Length, 0, PixelFormat.Rgba, PixelType.UnsignedByte, IntPtr.Zero);
// Charger chaque texture dans l'array
for (int i = 0; i < paths.Length; i++) {
using (Stream stream = File.OpenRead(paths[i])) {
ImageResult image = ImageResult.FromStream(stream, ColorComponents.RedGreenBlueAlpha);
GL.TexSubImage3D(TextureTarget.Texture2DArray, 0, 0, 0, i, width, height, 1, PixelFormat.Rgba, PixelType.UnsignedByte, image.Data);
}
}
// Paramètres de texture
GL.TexParameter(TextureTarget.Texture2DArray, TextureParameterName.TextureMinFilter, (int)TextureMinFilter.Linear);
GL.TexParameter(TextureTarget.Texture2DArray, TextureParameterName.TextureMagFilter, (int)TextureMagFilter.Linear);
GL.TexParameter(TextureTarget.Texture2DArray, TextureParameterName.TextureWrapS, (int)TextureWrapMode.ClampToEdge);
GL.TexParameter(TextureTarget.Texture2DArray, TextureParameterName.TextureWrapT, (int)TextureWrapMode.ClampToEdge);
// Générer des mipmaps pour la texture array
GL.GenerateMipmap(GenerateMipmapTarget.Texture2DArray);
return new Texture(handle);
}
public Texture(int glHandle) {
Handle = glHandle;
}
// Activate texture
// Multiple textures can be bound, if your shader needs more than just one.
// If you want to do that, use GL.ActiveTexture to set which slot GL.BindTexture binds to.
// The OpenGL standard requires that there be at least 16, but there can be more depending on your graphics card.
public void Use(TextureUnit unit) {
GL.ActiveTexture(unit);
GL.BindTexture(TextureTarget.Texture2D, Handle);
}
public void UseArray(TextureUnit unit) {
GL.ActiveTexture(unit);
GL.BindTexture(TextureTarget.Texture2DArray, Handle);
}
public void Assign(int shader, int i) {
int location = GL.GetUniformLocation(shader, "textures[" + i.ToString() + "]");
GL.Uniform1(location, i);
}
}
}

View file

@ -0,0 +1,20 @@
<Window x:Class="WpfMapView2D.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:glWpfControl="clr-namespace:OpenTK.Wpf;assembly=GLWpfControl"
xmlns:local="clr-namespace:WpfMapView2D"
mc:Ignorable="d"
Title="MainWindow" Height="450" Width="800">
<Grid>
<Grid Margin="0,0,0,20">
<glWpfControl:GLWpfControl
x:Name="OpenTkControl"
Render="OpenTkControl_OnRender" MouseLeftButtonDown="OpenTkControl_MouseLeftButtonDown"
/>
</Grid>
<StatusBar Name="statusBarData" Height="20" VerticalAlignment="Bottom"/>
</Grid>
</Window>

View file

@ -0,0 +1,42 @@
using OpenTK.Graphics.OpenGL4;
using OpenTK.Mathematics;
using OpenTK.Wpf;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
using WpfMapView2D.Common;
namespace WpfMapView2D;
/// <summary>
/// Interaction logic for MainWindow.xaml
/// </summary>
public partial class MainWindow : Window {
public Camera _camera;
public MainWindow() {
InitializeComponent();
var settings = new GLWpfControlSettings {
MajorVersion = 4,
MinorVersion = 0
};
_camera = new Camera(Vector3.UnitY * 300, (float)this.Width / (float)this.Height);
_camera.Fov = 60;
OpenTkControl.Start(settings);
}
private void OpenTkControl_OnRender(TimeSpan delta) {
GL.ClearColor(Color4.Blue);
GL.Clear(ClearBufferMask.ColorBufferBit | ClearBufferMask.DepthBufferBit);
}
private void OpenTkControl_MouseLeftButtonDown(object sender, MouseButtonEventArgs e) {
}
}

View file

@ -0,0 +1,16 @@
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<OutputType>WinExe</OutputType>
<TargetFramework>net7.0-windows</TargetFramework>
<Nullable>enable</Nullable>
<ImplicitUsings>enable</ImplicitUsings>
<UseWPF>true</UseWPF>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="OpenTK.GLWpfControl" Version="4.2.3" />
<PackageReference Include="StbImageSharp" Version="2.27.13" />
</ItemGroup>
</Project>